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Abstract

Rapid growth in data volume, user base, and data diversity render Internet-accessible in-
formation increasingly difficult to use effectively. In this paper we introduce Harvest, a system
that provides a set of customizable tools for gathering information from diverse repositories,
building topic-specific content indexes, flexibly searching the indexes, widely replicating them,
and caching objects as they are retrieved across the Internet. The system interoperates with
Mosaic and with HTTP, FTP, and Gopher information resources. We discuss the design and
implementation of each subsystem, and provide measurements indicating that Harvest can re-
duce server load, network traffic, and index space requirements significantly compared with
previous indexing systems. We also discuss a half dozen indexes we have built using Harvest,
underscoring both the customizability and scalability of the system.



1 Introduction

Over the past few years a progression of Internet publishing tools have appeared. Until 1992,
FTP [43] and NetNews [39] were the principal publishing tools. Around 1992, Gopher [38] and
WAIS [31] gained popularity because they simplified network interactions and provided better
ways to navigate through information. With the introduction of Mosaic [2] in 1993, publishing
information on the World Wide Web [3] gained widespread use, because of Mosaic’s attractive
graphical interface and ease of use for accessing multimedia data reachable via WWW links.

While Internet publishing has become easy and popular, making effective use of Internet-
accessible information has become more difficult. As the volume of Internet accessible information
grows, it is increasingly difficult to locate relevant information. Moreover, current information sys-
tems experience serious server and network bottlenecks as a rapidly growing user populace attempts
to access networked information. Finally, current systems primarily support text and graphics in-
tended for end user viewing; they provide little support for more structured, complex data. For a
more detailed discussion of these problems, the reader is referred to [10].

In this paper we introduce a system that addresses these problems using a variety of tech-
niques. We call the system Harvest, to connote its focus on reaping the growing crop of Internet
information. Harvest supports resource discovery through topic-specific content indexing made
possible by a very efficient distributed information gathering architecture. It resolves bottlenecks
through topology-adaptive index replication and object caching. Finally, Harvest supports struc-
tured data through a combination of structure-preserving indexes, flexible search engines, and data
type-specific manipulation and integration mechanisms. Because it is highly customizable, Harvest
can be used in many different situations.

The remainder of the paper is organized as follows. In Section 2 we discuss related work. In
Section 3 we present the Harvest system, including a variety of performance measurements. In
Section 4 we offer several demonstrations of Harvest, including WWW pointers where readers can
try these demonstrations. In Section 5 we discuss work in progress, and in Section 6 we summarize
Harvest’s contributions to the state of resource discovery.

2 Related Work

While impossible to discuss all related work, we touch on some of the better-known efforts here.

Resource Discovery

Because of the difficulty of keeping a large information space organized, the labor intensity of
traversing large information systems, and the subjective nature of organization, many resource
discovery systems create indexes of network-accessible information.

Many of the early indexing tools fall into one of two categories: file/menu name indexes of
widely distributed information (such as Archie [18], Veronica [19], or WWWW [37]); and full
content indexes of individual sites (such as Gifford’s Semantic File System [21], WAIS [31], and
local Gopher [38] indexes). Name-only indexes are very space efficient, but support limited queries.
For example, it is only possible to query Archie for “graphics packages” whose file names happen to
reflect their contents. Moreover, global flat indexes are less useful as the information space grows
(causing queries to match too much information). In contrast to full content indexes that support



powerful queries but require so much space that they cannot hold more than a few sites’ worth of
data, Harvest achieves space efficient, content indexes of widely distributed data.

Recently, a number of efforts have been initiated to create content indexes of widely distributed
sites (e.g., Gifford’s Content Router [45] and Pinkerton’s WebCrawler [40]). One of the goals of
Harvest is to provide a flexible and efficient system upon which such systems can be built. We
discuss this point in Section 3.1.

The WHOIS and Network Information Look Up Service Working Group in the Internet En-
gineering Task Iorce is defining an Internet standard called “WHOIS++” which gathers con-
cise descriptions (called “centroids”) of each indexed database [46]. In contrast to our approach,
WHOIS++ does not provide an automatic data gathering architecture, nor many of the scaling
features (such as caching and replication) that Harvest provides. However, Harvest can be used to
build WHOIS++.

Many of the ideas and some of the code for Harvest were derived from our previous work on
the agrep string search tool [47], the Essence customized information extraction system [26], the
Indie distributed indexing system [15], and the Univers attribute-based name service [12].

Caching and Replication

A great deal of caching and replication research has been carried out in the operating systems
community over the past 20 years (e.g., the Andrew File System [28] and ISIS [5]). More recently,
a number of efforts have begun to build object caches into HT'TP servers (e.g., Lagoon [41]), and
to support replication [22] in Internet information systems such as Archie.

In contrast to the flat organization of existing Internet caches, Harvest supports a hierarchical
architecture of object caches, modeled after the Domain Naming System’s caching architecture.
We believe this is the most appropriate arrangement because of a simulation study we performed
using NSFNET backbone trace data [14]. We also note that one of the biggest scaling problems
facing the Andrew File System is its callback-based invalidation protocol, which would be reduced
if caches were arranged hierarchically.

Current replication systems (such as USENET news [39] and the Archie replication system)
require replicas to be placed and configured manually. Harvest’s approach is to derive the replica
configuration automatically, adapting to measured physical network changes. We believe this ap-
proach is more appropriate in the large, dynamic Internet environment.

Structured Data Support

At present there is essentially no support for structured data in Internet information systems. When
Mosaic encounters an object with internal structure (such as a relational database or some time
series data), it simply asks the user where to save the file on the local disk, for later perusal outside
of Mosaic. The database community has done a great deal of work with more structured distributed
information systems, but to date has fielded no widespread systems on the Internet. Similarly, a
number of object-oriented systems have been developed (e.g., CORBA [23] and OLE [29]), but have
vet to be deployed on the Internet at large.

At present, Harvest supports structured data through the use of attribute-value structured
indexes. We are currently extending the system to support a more object-oriented paradigm to
index and access complex data.



3 The Harvest System

To motivate the Harvest design, Figure 1 illustrates two important inefficiencies experienced by -
most of the indexing systems described in Section 2. In this figure and the remainder of the paper,
a Provider indicates a server running one or more of the standard Internet information services
(FTP, Gopher, and HTTP). Bold boxes indicate excessive load being placed on servers, primarily
because the indexing systems gather information from Providers that fork a separate process for
each retrieved object. Similarly, bold edges indicate excessive traffic being placed on network
links, primarily because the indexing systems retrieve entire objects and then discard most of their
contents (for example, retaining only HTML anchors and links in the index). These inefficiencies are
compounded by the fact that current indexing systems gather information independently, without
coordinating the effort among each other.

Index
Index Index

Index ‘ Index

')

Provider Provider Provider

Figure 1: Inefficiencies Caused by Uncoordinated Gathering of Information from Ob ject Retrieval
Systems

Figure 2 illustrates the Harvest approach to information gathering. A Gatherer collects in-
dexing information from a Provider, while a Broker provides an indexed query interface to the
gathered information. Brokers retrieve information from one or more Gatherers or other Brokers,
and incrementally update their indexes.

Gatherers and Brokers can be arranged in various ways to achieve much more flexible and
efficient use of the network and servers than the approach illustrated in Figure 1. The leftmost
part of Figure 2 shows a Gatherer accessing a Provider from across the network (using the native
FTP, Gopher, or HT'TP protocols). This arrangement mimics the configuration shown in Figure 1,
and is primarily useful for interoperating with systems that do not run the Harvest software.
This arrangement experiences the same inefficiencies as discussed above, although the gatherered
information can be shared by many Brokers in this arrangement.

In the second part of Figure 2, the Gatherer is run at the Provider site. As suggested by the
lack of bold boxes and lines in this part of the figure, doing this can save a great deal of server load
and network traffic. We discuss the techniques used by the Gatherer to achieve these efficiency
gains in Section 3.1.
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Figure 2: Harvest Information Gathering Approach

The ellipses in Figure 2 indicate that a Broker can collect information from many Gatherers -

(to build an index of widely distributed information) and that a Gatherer can feed information
to many Brokers (thereby saving repeated gathering costs). By retrieving information from other
Brokers (illustrated in the rightmost part of Figure 2), Brokers can also cascade indexed views from
one another—using the Broker’s query interface to filter /refine the information from one Broker to
the next.

The final element illustrated in IFigure 2 is the Harvest Server Registry (HSR). This is a dis-
tinguished Broker instance that registers information about each Harvest Gatherer, Broker, Cache,
and Replicator in the Internet. The HSR is useful when constructing new Gatherers and Brokers,
to avoid duplication of effort. It can also be used when looking for an appropriate Broker at search
time.

In effect, this Gatherer/Broker design provides an efficient network pipe facility, allowing in-
formation to be gatherered, transmitted, and shared by many different types of indexes, with a
great deal of flexibility in how information is filtered and interconnected between providers and
Brokers. Efficiency and flexibility are important because we want to enable the construction of
many different topic-specific Brokers. For example, one Broker might index scientific papers for
microbiologists, while another Broker indexes PC software archives. By focusing index contents
per topic and per community, a Broker can avoid many of the vocabulary [20] and scaling problems
of unfocused global indexes (such as Archie and WWWW).

Gatherers and Brokers communicate using an attribute-value stream protocol called the Sum-
mary Object Interchange Format (SOIF) [9], intended to be easily parsed yet sufficiently expressive
to handle many kinds of objects. It delineates streams of object summaries, and allows for multiple
levels of nested detail. SOIF is based on a combination of the Internet Anonymous FTP Archives
(IAFA) IETF Working Group templates [17] and BibTeX [33]. Each template contains a type,
a Uniform Resource Locator (URL) [4], and a list of byte-count delimited field name/field value
pairs. We define a set of mandatory and recommended-attributes for Harvest system components.



For example, attributes for a Broker describe the server’s administrator, location, software version,
and the type of objects it contains. An example SOIF record is illustrated in Figure 3. 1.

@DOCUMENT{ ftp://ftp.cs.psu.edu/pub/techreps/TR123.ps

Title{28}: Type Structured File Systems

Author-Name{33}: C. Dharap, R. Balay and M. Bowman

Author-Organization-Type{11}: educational

Author-Department{32}: Computer Science and Engineering

Publication-Status{19}: Accepted, To appear.

Keywords{42}: types object-oriented semantic filesystems

Access-Protocol-v*{3}: FTP

Description{457}: The paper describes the design of Nebula. Nebula is a dynamic,
object based typed file system. Nebula uses types to create well
structured files as well as to export existing files in the internet
environment. This allows for backward scalability. Files in Nebula are
abstractions and are defined by objects. Nebula assumes a flat global
namespace and operations are provided to manipulate logical namespaces.

Figure 3: Example SOIF Template

Figure 4 illustrates the Harvest architecture in more detail, showing the Gatherer/Broker in-
terconnection arrangements and SOIF protocol, the internal components of the Broker (discussed
in Section 3.2), and the caching, replication, and client interface subsystems.

The Replicator can be used to replicate servers, to enhance user-base scalability. For example, -
the HSR will likely become heavily replicated, since it acts a point of first contact for searches and
new server deployment efforts. The Replication subsystem can also be used to divide the gathering
process among many servers (e.g., letting one server index each U.S. regional network), distributing
the partial updates among the replicas.

The Object Cache reduces network load, server load, and response latency when accessing
located information objects. Additionally, it will be used for caching access methods in the future,
when we incorporate an object-oriented access mechanism into Harvest. At present Harvest simply
retrieves and displays objects using the standard “hard coded” Mosaic procedures, but we are
extending the system to allow publishers to associate access methods with objects (see Section 5).
Given this support, it will be possible to perform much more flexible display and access operations.

We discuss each of the Harvest subsystems below.

3.1 The Gatherer Subsystem

As indexing the Web becomes increasingly popular, two types of problems arise: data collection
inefficiencies and duplication of coding effort. Harvest addresses these problems by providing an
efficient and flexible system upon which to build many different indexes. Rather than building

"While the attributes in this example are limited to ASCII values, SOIF allows arbitrary binary data
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Figure 4: Harvest System Architecture

one indexer from scratch to collect WAIS headlines, another to index Computer Science technical
reports, etc., Harvest can be configured in various ways to produce all of these indexes, at great
savings of server load, network traffic, and index space.

Efficient Indexing Support

Koster offers a number of guidelines for constructing Web “robots” [32]. For example, he suggests
using breadth-first rather than depth-first traversal, to minimize rapid-fire requests to a single
server. Rather than working around the existing shortcomings, we believe a better approach is to
provide a much more efficient index collection system.

The biggest inefficiency in current Web indexing tools arises from collecting indexing information
from systems designed to support object retrieval. For example, to build an index of HTML
documents, each document must be retrieved from a server and scanned for HTML links. This
causes a great deal of load, because each object retrieval results in creating a TCP connection,
forking a UNIX process, changing directories several levels deep, transmitting the object, and
terminating the connection. An index of FTP file names can be built more efficiently using recursive
directory listing operations, but this still requires an expensive file system traversal.

The Gatherer dramatically reduces these inefficiencies through the use of Provider site-resident
software optimized for indexing. This software scans the objects periodically and maintains a
cache of indexing information, so that separate traversals are not required for each request. ? More

?Some FTP sites provide a similar optimization by placing a file containing the results of a recent recursive
directory listing in a high-level directory. The Gatherer uses these files when they are available.



importantly, it allows a Provider’s indexing information to be retrieved in a single stream, rather
than requiring separate requests for each object. This results in a huge reduction in server load,
The combination of traversal caching and response streaming can reduce server load by several
orders of magnitude.

As a simple quantification of these savings, we measured the time taken to gather information
three different ways: via individual FTP retrievals, via individual local file system retrievals, and
from the Gatherer’s cache. To focus these measurements on server load, we collected only empty
files and used the network loopback interface in the case where data would normally go across
the network. For a more precise quantification we could have measured CPU, memory, and disk
resource usage, but measuring elapsed time provides a first order approximation of overall load
for each of the gathering methods. We collected the measurements over 1,000 iterations on an
otherwise unloaded DEC Alpha workstation. Our results indicate that gathering via the local
file system causes 6.99 times less load than gathering via FTP. More importantly, retrieving an
entire stream of records from the Gatherer’s cache incurs 2.72 times less server load than retrieving
a single object via FTP (and 2.81 times less load for retrieving all objects at a site, because of
a common-case optimization we implemented that keeps a compressed cache of this information
around). Thus, assuming an average archive site size of 2,300 files 3, serving indexing information
via a Gatherer will reduce server load per data collection attempt by a factor of 6,429. Collecting
all objects at the site increases this reduction to 6,631, because of the aforementioned common-case
cache.

The Gatherer also reduces network traffic substantially, based on three techniques. First, it
uses the Essence system [26] to extract content summaries before passing the data to a remote
Indexer. Essence uses type-specific procedures to extract the most relevant parts of documents as
content summaries - for example, extracting author and title information from LaTeX documents,
and routine names from executable files. - Hence, where current robots might retrieve a set of
HTML documents and extract anchors and URLs from each, Essence extracts content summaries
at the Provider site, often reducing the amount of data to be transmitted by a factor of 20-50
or more. * Beyond generating content summaries at the Provider site, the Gatherer also allows
Brokers to request only those summaries that have changed since a specified time, and transmits
the response stream in a compressed form. ° The combination of pre-filtering, incremental updates,
and compression can reduce network traffic by several orders of magnitude.

As an example of these savings, our content index of Computer Science technical reports (see
Section 4) starts with 2.44 GB of distributed around the Internet, and extracts 111 MB worth
of content summaries. It then transmits these data as a 41 MB compressed stream to requesting
Brokers, for a 59.4 fold network transmission savings over collecting the documents and building
a full-text index. The network transmission savings are actually higher still if one considers the
number of network links that must be traversed by each byte of data. For the above example, we
used traceroute [30] to count hops to each Provider site. In the measured example, the average hop
count was 18, magnifying the importance of network transmission savings. This savings corresponds
to running local Gatherers at each Provider site, rather than having to pull full objects across the

®We computed this average from measurements of the total number of sites and files indexed by Archie [44].

*The reduction factor depends on data type. For example, the reduction for PostScript files is quite high, while
the reduction for HTML files is fairly low.

5For access methods that do not support time stamps (like the current version of HT'TP), the Gatherer extracts
and compares “MD5” cryptographic checksums of each object before transmitting updates.
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Figure 5: Example of Essence Customized Information Extraction

Internet before summarizing at a central site. Note that these computations do not include the
additional savings from doing incremental updates.

While one might suspect that Essence’s use of content summaries causes the resulting indexes to
lose useful keywords, our measurements indicate that Essence achieves nearly the same precision ©
and 70% the recall of WAIS, but requires only 3-11% as much index space and 70% as much
summarizing and indexing time as WAIS [27]. For users who need the added recall and precision,
however, Essence also supports a full-text extraction option.

Flexibility of Index Collection

In addition to reducing the amount of indexing data that must be transmitted across the network,
Essence’s summarizing mechanism permits a great deal of flexibility in how information is extracted.
Site administrators can customize how object types are recognized (typically by examining file
naming conventions and contents); which objects get indexed (e.g., excluding executable code for
which there are corresponding source files); and how information is extracted from each type of
object (e.g., extracting title and author information from bibliographic databases, and copyright
strings from executable programs). Essence can also extract files with arbitrarily deep presentation-
layer nesting (e.g., compressed “tar” files). An example of Essence processing is illustrated in
Figure 5.

The Gatherer allows objects to be specified either individually (which we call “LeafNodes”)
or through type-specific recursive enumeration (which we call “RootNodes”). For example, it
enumerates FTP objects using a recursive directory listing, and enumerates HTTP objects by

SIntuitively, precision is the probability that all of the retrieved documents will be relevant, while recall is the

probability that all of the relevant documents will be retrieved [7].




recursively extracting the URL links that point to other HTML objects within the same server as
the original RootNode URL. 7

The combination of Gatherer enumeration support and content extraction flexibility allows the
site administrator to specify a Gatherer’s configuration very easily. Given this specification, the
system automatically enumerates, gathers, unnests, and summarizes a wide variety of information
resources, generating content summaries that range in detail from full-text to highly abridged and
specialized “signatures”. The Gatherer also allows users to include manually edited information
(such as hand-chosen keywords or taxonometric classification references) along with the Essence-
extracted information. This allows users to improve index quality for data that warrants the added
manual labor. For example, Harvest can incorporate site markup records specified using IETF-
specified “IAFA” templates [17]. The Gatherer stores the manual and automatically generated
information separately, so that periodic automated summarizing will not overwrite manually created
information,

The other type of flexibility supported by the Gatherer is in the placement of Gatherer processes.
Ideally, a Gatherer will be placed at each Provider site, to support efficient data gathering. Because
this requires cooperation from remote sites, we also allow Gatherers to be run remotely, accessing
objects using FTP/Gopher/HTTP. As an optimization, we are currently building a translator that
will translate FTP/Gopher/HTTP URLs to local file system references if the Gatherer is run locally.
Doing so will provide a factor of 6.99 reduction in server load while gathering locally, as indicated
by the server load measurements discussed above.

Because remote gathering imposes so much load, we implemented a connection caching mech-
anism, which attempts to keep connections open across individual object retrievals.® When the
available UNIX file descriptors are exhausted (or timed out with inactivity), they are closed ac-
cording to a replacement policy. This change resulted in a 700% performance improvement for
FTP transfers.

3.2 The Broker Subsystem

As illustrated in Figure 4, the Broker consists of four software modules: the Collector, the Registry,
the Storage Manager, and the Query Manager.

The Registry and Storage Manager maintain the authoritative list of summary objects that exist
in the Broker. For each object, the Registry records a unique identifier and a time-to-live. The
unique object identifier (OID) consists of the resource’s URL plus information about the Gatherer
that generated the summary object. The Storage Manager archives a collection of summary objects
on disk, storing each as a file in the underlying file system.

The Collector periodically requests updates from each Gatherer or Broker specified in its con-
figuration file. The gatherer responds with a list of object summaries to be created, removed,
or updated, based on a timestamp passed from the requesting Broker. The Collector parses the
response and forwards it to the Registry for processing.

"This restriction prevents a misconfigured Gatherer from traversing huge parts of the Web. As a second limitation,
Gatherers refuse to enumerate RootNode URLs beyond a (configurable) maximum number of resulting LeafNode

URLs.
8 At present this is only possible with the FTP control connection. Gopher and HT'TP close connections after each

retrieval.

10



When an object is created, an OID is added to the Registry, the summary object is archived
by the Storage Manager, and a handle is given to the Indexer. Finally, the Registry is written
to disk to complete the transaction. When an object is destroyed, the OID is removed and the
summary object is deleted by the Storage Manager and Indexer. When an object is refreshed, its
time-to-live is recomputed. If the time-to-live expires for an object, the object is removed from
the Broker. Since the state of the Indexer and Storage Manager may become inconsistent with the
Registry, periodic garbage collection removes any unreferenced objects from the Storage Manager
and Indexer.

The Query Manager exports objects to the network. It accepts a query, translates it into an
intermediate representation, and passes it to the search engine. The search engine responds with a
list of OIDs and some search engine-specific data for each. For example, one of our search engines
(Glimpse; see Section 3.3) returns the matching attribute for each summary object in the result list.
The Query Manager constructs a short object description from the OID, the search engine-specific
data, and the summary object. It then returns the list of object descriptions to the client.

A Broker can gather objects directly from another Broker using'a bulk transfer protocol within
the Query Manager. When a query is sent to the source Broker, instead of returning the usual
short description, the Query Manager returns the entire summary object.

The Query Manager supports remote administration of the Broker’s configuration. Several
Broker parameters can be manipulated, including the list of Gatherers to contact, the frequency of
contact with a Gatherer, the default time-to-live for summary objects, and the frequency of garbage
collection.

3.3 The Index and Search Subsystem

To accommodate diverse indexing and searching needs, Harvest defines a general Broker-Indexer
interface that can accommodate a variety of “backend” search engines. The principal requirements
are that the backend support boolean combinations of attribute-based queries, and that it support
incremental updates. One could therefore use a variety of different backends inside a Broker, such
as WAIS or Ingres (although some versions of WAIS do not support all the needed features).

We have developed two particular search and index subsystems for Harvest, each optimized for
different uses. Glimpse [35] supports space-efficient indexes and flexible interactive queries, while
Nebula [11] supports fast searches and complex standing queries that scan the data on a regular
basis and extract relevant information. '

Glimpse Index/Search Subsystem

The main novelty of Glimpse is that it requires a very small index (as low as 2-4% of the size of
the data), yet allows very flexible content queries, including the use of Boolean expressions, regular
expressions, and approximate matching (i.e., allowing misspelling). Another advantage of Glimpse
is that the index can be built quickly and modified incrementally.

The index used by Glimpse is similar in principle to inverted indexes, with one additional
feature. The main part of the index consists of a list of all words that appear in all files. For
each word there is a pointer to a list of occurrences of the word. But instead of pointing to the
exact occurrence, Glimpse points to an adjustable-sized area that contains that occurrence. This

11



area can be simply the file that contains the word, a group of files, or perhaps a paragraph. ® By
combining pointers for several occurrences of each word and by minimizing the size of the pointers
(since it is not necessary to store the exact location), the index becomes rather small. This allows
Glimpse to use agrep [47] to search the index, and then search the areas found by the pointers in
the index. In this way Glimpse can easily support approximate matching and other agrep features.

Since the index is quite small, it is possible to modify it quickly. Glimpse has an incremental
indexing option that scans all file modification times, compares each to the last index creation time,
and reindexes only the new and modified files. In a file system with 6,000 files of about 70MB,
incremental indexing takes about 2-4 minutes on a Sparcstation IPC. A complete indexing takes
about 20 minutes.

Glimpse’s support for Boolean queries can be particularly useful when the Gatherer was able
to extract attributes from the gathered objects—such as “author’s name,” “institution,” and “ab-
stract”. So, for example, it is easy to search for all articles about “incremental indexing” by
“unknown author” allowing one spelling error in the author’s name. Glimpse also allows filtering
by file names. This is important for supporting a combined browse/search paradigm because it al-
lows us to keep only one index and filter the search according to the current directory, transparently
to the user.

Harvest’s use of Essence content summarizing and Glimpse indexing provides a great deal of
space savings compared with WAIS. In Section 3.1 we cited our earlier Essence measurements
showing that Essence requires only 3-11% as much index space as WAIS. The situation is more
pronounced now, because Essence now generates more space efficient summaries, and because for
the original measurements we had indexed the content summaries using WAIS, but we now use
Glimpse. Combining these two changes, we compute that Harvest now requires a factor of 42.6
less index space than WAIS. This savings makes it possible for Harvest to index a great deal of
information using a moderate amount of disk space.

Nebula Index/Search Subsystem

Nebula provides two key features in support of complex, regularly executed, standing queries. First,
it represents each indexed object as a set of attribute/value pairs. This approach supports more
precise queries than typical keyword-based file indexes can, because users can query the database
with Boolean queries based on attributes. '

The Nebula search engine can be extended to include domain-specific query resolution functions.
For example, a server that contains bibliographic citations can be extended with a resolution
function that prefers keywords found in “abstract” and “title” attributes to keywords found in the
text of the document. The resolution function is constructed with domain-specific information—
namely, that the title and abstract of a document contain the most important and descriptive
information about the document.

For performance reasons, each attribute tag has a corresponding index that maps values to
objects. The indexing mechanism can differ from tag to tag, depending on the expected queries.
Attributes like “description” and “summary” use a mechanism that indexes individual keywords in
the value. The keyword mechanism supports queries based on pattern matching. Other tags, like
“name” and “size”, index values with a dynamic hash table for fast, precise retrieval.

®Paragraph-level indexing is not implemented yet.
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Unlike Glimpse, Nebula prefers efficient lookup over small indexes. However, for structured
summary objects some of the cost of indexing is reclaimed by storing a single copy of an attribute
that appears in many summary objects. As a result, for a database of 20,000 bibliographic citations,
- the index adds about 9% overhead. A query on this database with two attribute expressions and
one boolean operator is resolved in less than 100 milliseconds on a Sparc IPC.

Nebula’s second feature in support for complex standing queries is its notion of views. A view
is defined by a standing query against the database of indexed objects. Because views exist over
time, it is easy to refine and extend them over time, and to observe the affect of query changes
interactively. A view can scope a search in the sense that it constrains the search to some subset
of the database. For example, within the scope of a view that contains computer science technical
reports, a user may search for networks without removing information about social networks.

Nebula’s views facilitate the construction of hierarchical classification schemes for indexed ob-
jects. For example, a simple classification scheme for our PC software Broker (see Section 4)
implements, at the-top level, a view that selects all summary objects that represent PC software.
A more specific class, like software for Microsoft Windows, is constructed from objects in the PC
software view; i.e., the PC software view scopes the Windows view. The Windows view selects
summary objects for Windows programs. The query used to define the Windows view depends
on the attributes in the summary objects. If a summary objects contain an explicit classification
attribute such as “software-class:pc-software.windows”, then the query used to define the view is
simply “software-class=pc-software.windows”. In practice, the query is more difficult to construct.

Currently, we construct the query based on the archive and directory that contains the summarized
file.

3.4 The User Interface

There are two conflicting goals in designing a user interface for use in as diverse an environment
as the Internet. On the one hand, we want to provide a great degree of flexibility and the ability
to customize for different communities and for different users. On the other hand, we want a
reasonably simple, uniform interface so that users can move from one domain to another without
being overwhelmed.

Uniform Interface

Harvest supports a uniform client interface through the Query Manager in the Broker. The Query
Manager in each Broker implements the same query language, which supports Boolean combinations
of keyword- and attribute-based expressions. Query results are presented in a uniform format that
includes some Indexer-specific information plus the object identifier for each object.

The Query Manager uses an HTML form to collect the query from the user, and then passes
the query to the Harvest gateway. The gateway retrieves the query from the form and sends it
to the query manager. The set of objects returned by the Query Manager is converted into an
H'TMI page with hypertext links to complete summary objects in the Broker’s database and to
the original resource described by the summary object. An example query is shown in Figure 6.

Currently, the Query Manager maintains no state across queries. Thus, the Broker’s uniform
interface does not support query refinement. However, simple query refinement is implemented by
most WWW clients. For example, Mosaic caches recently accessed documents in virtual memory.
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File  Options  Navigale  Annolale

Help

Document Title: | Query Interface to the WWW Home Pages Broker

Document URL: |http://rd.cs.colorado. edu/brokers /wwn-home-pages/query . hitml

Query Interface to the WWW Home Pages Broker

Enter the query in the box below. For example, try:
Computer AND Science AND Department

to match the Home Pages with Computer Science Department in the title. Common attributes to use include: Author,

Keywords, Title, and URL-References. Look here for help formulating queries; and here for some example WWW Home

Page queries. For more information about the Harvest system, look here,

supreme AND court AND decisions

Query:

Press button to submit or reset the query. ;

Query Options:

B Case ingensitive

Number of errors allowed.

Result Set Options:

B Display Matched L ines (from object summaries)
B Display Object Descriptions (if available)

B Verbose

Back|!Forward|iHome|{Reload|{Open...|Save As..|iClone|{New Window|{Close Window|

Figure 6: Example Query

14




Previous queries can be retrieved and refined by moving through the cache. We are currently
working on extensions to the Query Manager that will save state between queries.

Interface Customization

Harvest supports user interface customization through direct access to each Indexer. For example,
the Glimpse-specific interface supports additional switches for approximate matching and record
specific document retrieval, while the Nebula-specific interface supports extensive query refinement
and improved integration of organization and search.

Direct access lets the user take advantage of the specific strengths of each Indexer. While
this means users must learn multiple interfaces, it also increases flexibility. A domain-specific
Indexer can use the Broker to collect information from several sites. This information can be
accessed by neophytes through the uniform interface. Expert users benefit from the additional
functionality provided by the Indexer through the direct interface. In this way, Harvest facilitates
the construction of domain-specific databases (such as image or genome databases) that require a
unique query language or result presentation.

We are currently working on several tools to allow much greater customizations.

3.5 The Replication Subsystem

Harvest provides a weakly consistent, replicated wide-area file system called mirror-d, on top of
which Brokers are replicated. Mirror-d itself is layered atop a hierarchical, flooding update-based
group communication subsystem called flood-d [13].

Fach mirror-d instance (or mirror-daemon) in a replication group occasionally floods complete
state information to its immediate neighbors, to detect updates that flood-d failed to deliver,
possibly due to a long-lasting network partion, site failure, or failure of a flood-d process. Mirror-d
implements eventual consistency [6]: if all new updates cease, the replicas eventually converge.

Flood-d logically floods objects from group member to group member along a graph managed
by flood-d itself. Fach flood-d instance (or flood-daemon) measures the end-to-end network band-
width achievable between itself and other flood-daemons running at other group member sites.
A master site within each group constructs and reliably distributes either a two-connected or a
three-connected, low diameter, logical topology of the group members.

A flood-daemon can belong to many groups, making it possible to construct hierarchies of groups
and to stitch otherwise independent groups together by sharing two or three common members.

3.6 The Object Caching Subsystem

To meet ever increasing demand on network links and information servers, Harvest includes a
hierarchically organized Object Caching subsystem, as illustrated in Figure 7.

Below, we describe the resolution policy, implementation philosophy, and performance of the
Object Caching subsystem.

Hierarchical Caching

Clients request objects through the Cache’s proxy-HTTP interface, similar to the CERN httpd
cache [34]. We also implemented a generic protocol, independent of HTTP. The proxy interface
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Figure 7: Topology-Based Cache Organization

is mostly useful for allowing unmodified Mosaic clients to use the system by simply setting three
environment variables.

A cache resolves a miss by sending a “query” datagram to each of its neighbor and parent
caches and to the “inetd” echo port of the requested object’s home site. Each neighbor and parent
responds with a hit or miss message, depending on the state of the object in their caches. If the
object’s home is running a UDP [42] echo daemon, the object home echos a kit message. The cache
fetches the object from the fastest site to return a hit message, whether it be another cache or the
object’s home site. If all caches miss and the home site is slower than all the parent caches, the
cache retrieves the object through the fastest parent cache to miss. Otherwise, the cache retrieves
the object from the home site if its response time is close to the fastest cache. In addition to caching
Gopher, HTTP, and FTP objects, we maintain a cache of recent DNS name-to-address mappings
to optimize common-case cache behavior.

Some standard (perhaps based on MIME headers [8]) is needed to indicate time-to-live [16]
values to objects. Until this standard emerges, our cache will continue to assign default values.

The cache runs as a single, event-driven process. 1/0 to disk and to cache clients is non-blocking.
I/0 between cache clients begins as soon as the first few bytes of an object fault their way into the
cache. For ease of implementation, the cache spawns a separate process to retrieve FTP files, but
retrieves HTTP and Gopher objects itself. The cache separately manages replacement of objects
on disk and objects loaded in its virtual address space. It also keeps all meta-data 19 for cached
objects in virtual memory, to eliminate access latency to the meta-data. Since the cache is single
threaded but otherwise non-blocking, page faults are the only source of blocking.

10File name and access statistics for each URL.

16



23 w®

f=3 o

(=3 f=
T

# Retrievals At Given Time
8
=
T

0 2 4 6 8 10 12 14 16 18 20
Response time (seconds), Single Client

10000 T T T T T T T T T

8000+

60001

4000

2000

# Retrievals At Given Time

~ - o
i —

4 6 8 10 12 14 16 18 20
Response time (seconds), Ten Concurrent Clients

=]

Figure 8: Harvest vs. CERN Cache Performance

Cache Performance

We contrast non-hierarchical cache performance using a workload of 1,000 objects collected from
logs of Mosaic activity. We collected the response time to retrieve each of these objects from
our cache and from CERN’s cache under the load of a single client and again from ten clients,
referencing all 1,000 URLs in a random order.

With one client, all 1,000 references miss. As illustrated in the top half of Figure 8, the Harvest
cache returns 600 of these objects in less than 1 second, while it takes the CERN cache 2 seconds
to return 600 objects. Since a handful of these objects come a long way through the network, some
response times are quite large. In summary, the Harvest cache tends to be twice as fast on the
objects that can be retrieved quickly and is never slower than the CERN cache for slow to retrieve
objects. ‘

Under our multiple client workload, one or more clients see a miss when they reference their
object; the rest see a hit. As illustrated in the bottom half of Figure 8, under these conditions the
Harvest cache is again roughly twice as fast as CERN’s cache for most of these references, and has
a much shorter tail of longer response times. Of these 10,000 references, only 172 references to our
cache while 938 references to CERN’s cache experience more than 4 second response time.

4 Application Demonstrations
To provide some concrete examples of its flexibility and scalability, in this section we discuss a

number of Brokers we have built using Harvest. Table 1 summarizes the features demonstrated by
these Brokers.
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Feature Demo Brokers ’ | #0Objects ‘ #Sites ]

Topic-specific indexing; NIDR-SW, NIDR-Doc, 635 80
Broker cascading NIDR
Scalable content indexing; CS Technical Reports 18,000 217

Multiple formats;
Gathering distribution

Structured indexing; SFI Time Series Papers 32 4
Indexing customizability

Support for other standards; | PC Software Packages 25,000 8
Incorp. manual indexing info

Focused global content index | WWW Home Pages 5,000 1,761

vs. exhaustive name index

Locate Harvest servers Harvest Server Registry 19 3
during search & index config.

Table 1: Summary of Demonstrated Features of Constructed Indexes

NIDR Brokers

To demonstrate the idea of topic-specific indexing, we began by constructing Brokers focused on
Networked Information Discovery and Retrieval (NIDR) systems—a topic about which we have
the background necessary to construct meaningful lists of objects to index, and about which a
good deal of information is available online. We constructed three Brokers: one for software, one
for documents, and one that gathers from these first two Brokers (with no additional network or
remote server load) to provide a combined Broker of NIDR information.

To demonstrate the scaling advantages of topic-specific. Brokers, suppose we want-to locate
technical reports about approximate string searching. Issuing the query “approximate” at our
NIDR-Docs Broker locates Glimpse. On the other hand, issuing this same query at our Computer
Science technical reports Broker (see below) locates many irrelevant papers in response to this query,
such as a paper about approximate analysis of buffer replacement schemes. Using a topic-specific
Broker reduces this unwanted breadth (the “vocabulary” problem).

Our NIDR Broker helps underscore the role topical experts can fill in creating well-focused
Brokers, as well as the value of distributed indexing software in support of this role. We believe
such experts will play an increasingly important role as the Internet moves towards professionally
managed information collections.

The combined NIDR software + documents Broker gathers 635 objects from 80 sites.

Users can try the NIDR Broker at http://rd.cs.colorado.edu/brokers/nidr/query. html.

Computer Science Technical Report Broker

To demonstrate the scaling benefits of our content summarizing approach, we next built a Broker
of Computer Science technical reports. Because content summaries require so much less space than
full content indexing, we were able to index content summaries for over 18,000 documents with this
Broker, gathered from 217 sites around the world. In contrast, the current WAIS Computer Science
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technical reports Broker only indexes authors and titles for 10,000 documents, and abstracts for
2,300 documents. ‘

To construct the list of indexed objects, we began with several previously existing lists, in-
cluding a WAIS index of Computer Science technical reports maintained at Monash University
in Australia, !, the University of Indiana index of Computer Science technical reports !2, and a
large Computer Science bibliography maintained at the University of Karlsruhe in Germany'®. We
augmented these lists with sites located by doing an Archie substring search for “report”. We then
visited each site and selected paths appropriate to the technical report Broker.

Our technical report Broker also demonstrates two different types of gathering distribution,
First, we divided the list of URLs among Gatherers running at USC, PSU, and Colorado in such
a fashion that sites were gathered from whichever Gatherer was closest. * Second, this Broker
gathers from the NIDR Broker in addition to the above URL lists, representing topical distribution
in the gathering process.

Users can try the CS Technical Report Broker at
hittp://rd.cs.colorado.edu/brokers/cstech /query. html.

Time Series Citation Index

To demonstrate Harvest’s indexing customizability, we next constructed a citation index of docu-
ments that reference the Santa Fe Institute (SFI) time series data [1]. These data consist of several
sets of time series, such as measured laser intensity pulsations and records of Swiss/US monetary
exchange rate bids. These time series provide a reference set that allows time series researchers to
compare the effectiveness of various algorithms in predicting time series.

In addition to supporting Harvest’s usual content index of SFI papers, the SFI time series Broker
provides a special SFIRefs attribute that indicates which time series each paper references. To
create these attributes, we built a Perl script that matches each document content summary against
approximately 70 regular expression pattern matches, to heuristically determine each document’s
referenced time series. For example, if the expression “infrared.*laser” matches a document at
indexing time, Harvest generates time series “A” attributes in the index, allowing users to locate
this document when searching by time series citation. It is also possible to override the indexing-
time heuristics with manual updates, to support higher quality attributes when the heuristics do
not suffice.

Users can try the SFI time series Broker at http://rd.cs.colorado.edu/brokers/sfi/query.html.

PC Software Broker

Our next Broker demonstrates Harvest’s ability to incorporate indexing information in a variety of
formats from other sources, including high quality, manually generated information.

There is a fairly large collection of “shareware” and public domain software available at various
Internet sites, for which many contributors have manually created structured, conceptual descrip-
tions of each package. Because each site uses a somewhat different format for these files, we used

11 Accessible from wais://daneel.rdt.monash.edu.au:210/cs-techreport-archives
12 Accessible at http://cs.indiana.edu/cstr/search

12 Accessible at ftp://ftp.ira.uka.de/pub/bibliography.

We used traceroute to make simple estimates of network distances.
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Harvest’s customizable extraction features to collect indexing information in site-specific ways, and
place this information into uniformly-structured SOIF templates. Note that this Broker is only
searchable using the “Description” attribute—mno content indexing is supported. This point illus-
trates the fact that Harvest does not require content summaries to be extracted when building
Brokers.

As a result of this effort, we were quickly able to incorporate high-quality indexing information
about more than 25,000 software objects into the index. This Broker provides better support
for searches than more general-purpose software indexes (such as Archie), because it contains
conceptual descriptions of a focused collection of information. For example, this Broker would
allow someone to search for “batch programming language”, while Archie could only locate this
software if someone searched for “RAP”.

We have also built Gatherer translation scripts for some other manually created indexing infor-
mation formats, including the “Linux Software Map” (LSM) format and the the Internet Anony-
mous FTP Archives IETF Working Group (IAFA) [17] format. At present we have a Broker runing
for LSM data but none for IAFA data, because there are not yet enough sites using the IAFA
format to warrant building a Broker.

These Brokers are similar to the above PC archive Broker, but contain more attributes. For
example, the LSM format contains separate fields for the package description, author, maintainer,
copyright policy, and a half-dozen other attributes; the IAFA format contains approximately 100
different fields, including many optional fields.

A similar effort would allow us to incorporate other forms of information into Harvest Brokers,
such as the U.S. Library of Congress Machine Readable card Catalog (MARC) standard [36].

Users can try the PC software Broker at http://rd.cs.colorado.edu/brokers/pcindex/query.html.

Building Harvest Brokers Corresponding to Well-Known Existing Indexes

One of the ideas behind Harvest is to provide a customizable system that can be configured in
various ways to create many types of Brokers, to reduce the amount of effort that currently goes
into building single-purpose indexers. Here we briefly discuss uses of Harvest for creating particular
Brokers related to some well-known, existing, single-purpose indexes and indexing systems.- In many
cases, Harvest Brokers can support more powerful searches, because they index document content
sumimaries, rather than just names or other minimal document information.

McBryan created an index (called the World Wide Web Worm or WWWW) of anchors and
HTML links, by gathering documents from around the World Wide Web [37]. Using Harvest we
created a related Broker, containing content summaries of Web home pages. We began with a
list of Web pointers from various sources, including the WWWW, the the ”What’s New” page
maintained by the National Center for Supercomputing Applications’” WWW server, McBryan’s
Mother-of-all-BBS’s [37], URLs gleaned from USENET postings, and various other sources. We
periodically gather this list and prune it to a set of home pages, which we then gather, content
summarize, and index. We chose not to gather beyond home pages, because home pages typically
point to other Web pages, and hence we suspect that one need not traverse the entire Web (ala
WWWW) to provide a useful global Web index. Moreover, because we index content summaries
rather than just anchor and HTML strings, our home page Broker captures much of the content
of Web sites without having to collect every last Web page—providing a useful index at lower cost
than that incurred by the WWWW. In fact, in some ways our Home page index works better,
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because HTML documents tend to contain so many cross links among each other that an index of
only the Home pages can provide less duplicate-ridden query results than similar queries made to
WWWW.

Users can try our WWW home page index at http://rd.cs.colorado.edu/brokers/www-home-
pages/query. html.

We could make similar use of Harvest to build Brokers like those provided by Archie and
Veronica. By simply constructing a Gatherer configuration and building a customized Essence
extraction script, each of these indexes can be constructed easily.

We also built an index of Computer Science technical report abstracts, from the Karlsruhe
bibliography mentioned earlier in this section. In contrast with our Computer Science Broker, this
index only captures document abstracts, but covers many documents that are not available online.
Because it uses our Glimpse indexing system, this index provides more flexible search power (e.g.,
allowing misspellings) than the Karlsruhe index server does. In time we plan to build a custom
search engine that-will first search our Computer Science technical report content index and then
search our Computer Science technical report abstract index, without the users’ needing to be
aware that multiple Brokers are being consulted.

Users can try our Computer Science technical report abstract index at
http://glimpse.cs.arizona.edu:1994 /bib.

One could use Harvest to provide the functionality of many other indexes and indexing systems.
One could build a WAIS-like system by using the Essence full-text extraction mechanism, and
adding a ranking feature to one of the Harvest search engines. (Or, one could use the WAIS
code as an index/search inside of a Broker.) One could build a WebCrawler [40] by defining an
appropriate Gatherer configuration; and using the Essence full-text extraction mechanism. One
could build a WHOIS++ [46] system by a combination of a Gatherer configuration and Essence
extraction script for constructing the centroids, and then providing a front-end query script to
search the gathered SOIF records.

As a final example of how Harvest can be used to build other Brokers, we plan to implement
WAIS gathering support in Harvest. Once we have done that, we will be able to build a Broker
of WAIS headlines, similar to that supported by Gifford’s Content Router system [45]. In contrast
with his system, though, we will serve the raw indexing information, allowing many other indexes
to be constructed from our data at little additional network load (and no additional load on the
gathered WAIS servers).

5 Work in Progress

At present we are extending Harvest in a number of directions. First, we are adding support for a
more ob ject-oriented style of access to information objects, to manipulate and display complex types
of data. For this purpose we will allow sites to run Brokers that register object types and access
methods at their site. In this way, objects exported by HTTP/FTP/Gopher can be given explicit
types, and each type can have an associated set of programs for manipulating or displaying object
contents. We will modify Mosaic to check for this Broker, allow users to select among methods,
retrieve the specified code, and run it on a dedicated method server host. It will be possible to
run access methods in succession, for example allowing an image to be filtered by one method and
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then displayed by another. Clearly, there are several security and architecture-dependency issues
to work out [25].

We are also developing support for selecting among instances of a replicated service. We are
doing this initially in the context of Network Time Protocol servers [24], but in time we will extend
this system for use with locating nearby Cache and Replica servers as well.

We are developing tools similar to the Nebula information management system [11] to improve
searching capabilities. These include recursive query evaluation, iterative query refinement, and
integrated support for taxonomies. Recursive query evaluation enables automatic search of several.
servers located in the HSR. This relieves from the user the burden of manually guiding the search to
several candidate brokers. Iterative query refinement supports user feedback in the query resolution
mechanism. Taxonomy support facilitates expressive, precise queries that can be resolved with
minimal overhead.

We are working to support a variety of additional index types and index mechanisms. Additional
types include a widely replicated, global-index of rare words. Like the HSR, the rare word index
will point to brokers that contain related summary objects. Another type of index is the “join”
index of individual site indexes. This may be a virtual index that redistributes queries to other
sites. To support these and other indexes, we are working on indexer interfaces to WAIS and other
popular database systems.

6 Summary

While systems like Gopher and WWW make it easy to publish information on the Internet, making
effective use of Internet-accessible information grows increasingly difficult. Rapid growth in the
volume of information makes it difficult to locate relevant information. In addition, current systems
experience acute server and network bottlenecks when many users attempt to access networked
information. Finally, current systems provide little support for structured, complex data.

In this paper we introduced the Harvest system, which addresses these problems through a
combination of topic-specific content indexing made possible by a very efficient distributed infor-
mation gathering architecture; topology-adaptive index replication and hierarchical object caching;
and structure-preserving indexes, flexible search engines, and data type-specific manipulation and
integration mechanisms. We presented measurements indicating that Harvest can reduce server
load by a factor of over 6,000, network traffic by a factor of over 1,000, and index space require-
ments by a factor of 43, compared with previous indexing systems. Harvest also provides a high
performance Object Cache that can be arranged hierarchically for scalability reasons.

Harvest interoperates with Mosaic and with HTTP, FTP, and Gopher information resources,
and defines several protocols that can interoperate with a variety of digital library, knowledge robot,
and other types of systems.

To demonstrate system-scalability and the ease with which users can customize Harvest for
building many types of indexes, we built a number of indexes using Harvest, including indexes
of Networked Information Discovery and-Retrieval software and documents; Computer Science
technical reports; documents referencing the Santa Fe Institute time series competition data; PC
Software; WWW Home Pages; and other types of data.

We are interested in getting other groups to use Harvest for indexing their information. Inter-
ested readers can send electronic mail to harvest-dvl@cs.colorado.edu.
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The Harvest software will be available from ftp://ftp.cs.colorado.edu/pub/cs/distribs/harvest
around the end of Summer 1994. The system consists of approximately 100,000 lines of code,
divided among 33,000 in the Gatherer, 16,000 in the Index/Search system, 5,000 in the Broker,
9,000 in the Cache, 21,000 in the Replicator, and 15,000 in data structure library routines.
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